
将集群的 id 设置为序数变量和将集群的质心设置为连续变量,这两项可能不会为多维数据的回归模型提供更多的相关信息。但是当在一个维度上进行聚类分析时,上面给出的所有方法都有望为多维数据的回归模型提供有意义的信息。举个例子,根据头发的长度将人们分成两组,将聚类 ID 存储为叙述变量,将聚类质心存储为连续变量,这样一来,多维数据的回归模型将会得到有用的信息。
创造出具有自我学习能力的机器——人们的研究已经被这个想法推动了十几年。如果要实现这个梦想的话,无监督学习和聚类将会起到关键性作用。但是,无监督学习在带来许多灵活性的同时,也带来了更多的挑战。
在从尚未被标记的数据中得出见解的过程中,聚类扮演着很重要的角色。它将相似的数据进行分类,通过元理解来提供相应的各种商业决策。
在这次能力测试中,我们在社区中提供了聚类的测试,总计有1566人注册参与过该测试。如果你还没有测试过,通过阅读下面的文章,你可以统计一下自己能正确答对多少道题。 网址:http://dzwuliu.kuqiw.cn/ |